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Abstract. This article investigates late-onset cognitive impairment using neuroimaging and genetics biomarkers for Alzheimer’s
Disease Neuroimaging Initiative (ADNI) participants. Eight-hundred and eight ADNI subjects were identified and divided
into three groups: 200 subjects with Alzheimer’s disease (AD), 383 subjects with mild cognitive impairment (MCI), and 225
asymptomatic normal controls (NC). Their structural magnetic resonance imaging (MRI) data were parcellated using BrainParser,
and the 80 most important neuroimaging biomarkers were extracted using the global shape analysis Pipeline workflow. Using
Plink via the Pipeline environment, we obtained 80 SNPs highly-associated with the imaging biomarkers. In the AD cohort,
rs2137962 was significantly associated bilaterally with changes in the hippocampi and the parahippocampal gyri, and rs1498853,
rs288503, and rs288496 were associated with the left and right hippocampi, the right parahippocampal gyrus, and the left inferior
temporal gyrus. In the MCI cohort, rs17028008 and rs17027976 were significantly associated with the right caudate and right
fusiform gyrus, rs2075650 (TOMM40) was associated with the right caudate, and rs1334496 and rs4829605 were significantly
associated with the right inferior temporal gyrus. In the NC cohort, Chromosome 15 [rs734854 (STOML1), rs11072463 (PML),
rs4886844 (PML), and rs1052242 (PML)] was significantly associated with both hippocampi and both insular cortices, and
rs4899412 (RGS6) was significantly associated with the caudate. We observed significant correlations between genetic and
neuroimaging phenotypes in the 808 ADNI subjects. These results suggest that differences between AD, MCI, and NC cohorts
may be examined by using powerful joint models of morphometric, imaging and genotypic data.
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INTRODUCTION

Alzheimer’s disease

Alzheimer’s disease (AD) is by far the most com-
mon form of dementia among the elderly. Late onset
AD (LOAD), defined by the onset of symptoms after
age 65, is sporadic, non-familial AD and has annual
incidence rates increasing from 1% at age 65–70 years
to 6–8% at age 85 and older [1, 2]. Genetic studies
have provided significant insights on the molecular
basis of AD, but the mechanisms underlying AD onset
and progression remain largely unexplained. While
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the underlying causes of LOAD are still unknown,
there is ample evidence from familial aggregation,
transmission pattern, and twin studies that AD has a
substantial genetic component that has an estimated
heritability of 58% to 79% [3, 4], and the lifetime risk
of AD among first-degree relatives of patients may
be twice that of the general population [5]. The vast
majority has complex, genetic determinants because
only apolipoprotein E (APOE) has been established
unequivocally as a LOAD-susceptible gene.

Alzheimer’s disease imaging studies

Recent and ongoing advances in neuroimaging and
genetics, including high-throughput genotyping tech-
niques, have made it possible to scan populations
with multimodality neuroimaging, collect genome-
wide data [6, 7] and study the influence of genetic
variation on the brain structure and function [8–10].
In this paper, neuroimaging genetics refers to the use
of brain imaging to evaluate phenotypic variation in
the brain morphometry and physiology as a function
of genotypic variation, using computationally-derived
neuroanatomical, functional, or connectivity imag-
ing markers as phenotype assays to evaluate genetic
variation [11]. The genes that influence differently vol-
ume and shape changes in neuroimaging phenotypes
between AD and normal controls (NC) subjects may
provide important information regarding the mech-
anisms of disease-related changes in neuroimaging
phenotypes [8].

Alzheimer’s disease genetics

Using the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) baseline magnetic resonance imaging
(MRI) and genetic database, we selected LOAD, mild
cognitive impairment (MCI) subjects and NC sub-
jects. In this paper, we present a neuroimaging genetics
framework that uses a whole-genome-and-whole-brain
strategy to systematically evaluate genetic effects on
neuroimaging phenotypes to discover quantitative trait
loci (QTLs). Quantitative trait (QT) association stud-
ies have been shown to have increased statistical
power and thus decreased sample size requirements
[12]. In addition, neuroimaging phenotypes may be
closer to the underlying biological etiology of the dis-
ease, making it easier to identify underlying genes
[8]. The methodology proposed in this paper is based
on the identification of strong associations between
regional neuroimaging phenotypes as QTs and single
nucleotide polymorphism (SNP) genotypes as QTLs.

Many recent studies of the genetics of AD have
examined familial and hereditary aspects of the dis-
order as well as sporadic cases of AD. APOE �4 allele
is implicated in AD and associated with AD patho-
biology as a risk factor. On the other hand, APOE
�2 allele is well known as a protective factor for AD
[13–15]. The genetics of AD are complex because the
practical effects may be weak, albeit statistical effects
could still be strong, sample-sizes are often unbal-
anced (number of cases � genomics biomarkers),
and considerable difficulties with result replication and
validation [16–19]. Large-scale genome-wide associ-
ation studies (GWAS) show promise in untangling
the genetic footprint of this neurodegenerative disease
[18, 20–24].

This study focuses on analyzing gene interactions
and collective genome effects on the brain structure in
ADNI AD, MCI, and NC data to broaden our horizon
of understanding of late-onset cognitive impairment
in terms of neuroimaging genetics. Specifically, the
goal is to utilize existent Laboratory of Neuro Imag-
ing (LONI) computational tools and techniques (e.g.,
the LONI Probabilistic Brain Atlas [25], BrainParser
[26], LONI Pipeline environment [27, 28]) to study
interrelations between genotypes and biomedical neu-
roimaging features in the subjects from ADNI. This
study of collective multi-gene effects on phenotype
and neuroimaging measures is expected to enable, with
great probability, the detection of genotype-phenotype
associations, which may be marginal for a single SNP
or a single gene.

There were several efforts to investigate pheno-
typic, genetic and imaging markers by combining
neuroimaging phenotypes (QT) and genetic varia-
tions [8, 29, 30]. However, there are few studies
have included shape-based neuroimaging measures.
Therefore, in this study, we are attempting to expand
the narrow scope, in terms of late-onset cognitive
impairment, that has been maintained in the field of
neuroimaging genetics using the Pipeline environment.

METHODS

Study participants

808 ADNI participants were screened, enrolled, and
followed up prospectively according to the study pro-
tocol described in [31] (Supplementary Table 1). For
each participant, clinical severity of dementia was
assessed using an annual semi-structured interview,
which yielded an overall Clinical Dementia Rating
(CDR) score and the CDR Sum of Boxes [32]. In
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addition, the Mini-Mental State Examination and a
neuropsychological battery were also recorded. Three
types of participant cohorts were selected from the
ADNI database based on their classification at base-
line. The 808 ADNI participants, ages 65 to 85,
included: 225 NC (Male: 116, Female: 109), 383 MCI
(Male: 246, Female: 137), and 200 AD (Male: 108,
Female: 92).

Subject genotyping

To generate an individual genotype labeling,
the ADNI database were downloaded (http://adni.
loni.usc.edu/) and merged into a single dataset con-
taining the genome-wide information of all 808
participants. We used PLINK [33] version 1.09
(http://pngu.mgh.harvard.edu/∼purcell/plink/) to con-
duct the genetic analyses of the blood samples
obtained from DNA extraction. Both the DNA extrac-
tion and genotyping (by TGen using the Illumina
Human610-Quad BeadChip) were done blindly to
group assignment. Finally, using Illumina BeadStu-
dio 3.2 software, the normalized bead intensity data
for each sample were used to generate SNP genotypes
from fluorescent intensities using the manufacturer’s
default cluster settings. The detailed genotyping pro-
cess is described in this study protocol [8].

Quality control (QC) protocols on the genome-wide
data were performed using the PLINK software pack-
age (http://pngu.mgh.harvard.edu/∼purcell/plink/),
release v1.09. The following criteria were used to
exclude SNPs from the imaging-genetics analysis: (1)
call rate per SNP >90%, (2) minor allele frequency
(MAF) >10%, and (3) Hardy-Weinberg equilibrium
test of p > 0.01. The final number of SNPs included in
the analyses was 587, 383 (see [8]).

We used PLINK [34] for population stratification.
PLINK uses genome-wide average proportion of alle-
les shared between any two individuals to cluster
subjects into homogeneous subsets and perform classi-
cal multidimensional scaling (MDS) [35] to visualize
substructure and provide quantitative indices of popu-
lation genetic variation.

Structural MRI data

We downloaded the raw Digital Imaging and
Communications in Medicine (DICOM) images
ADNI data from this publicly accessible database
(http://adni.loni.usc.edu/). The ADNI MRI scans
were acquired at multiple sites using the GE
Health Care (Buckinghamshire, England), Siemens

Medical Solutions USA (Atlanta, Georgia), or
Philips Electronics 1.5 T (Philips Electronics
North America; Sunnyvale, California) system
[36]. Two high resolution T1-weighted volumet-
ric magnetization-prepared 180◦ radiofrequency
pulses and rapid gradient-echo (MP RAGE) scans
were collected for each study participant, and the
raw DICOM images were downloaded from the
public ADNI site (http://adni.loni.usc.edu/data-
samples/). Parameter values can be found at
http://adni.loni.usc.edu/about/centers-cores/. The raw
neuroimaging scans were corrected for intensity
inhomogeneity, scull-stripped, and subcortical white
matter and deep gray matter volumetric structures
were segmented using previously published methods
[37].

The pipeline computational environment

The 808 ADNI subjects (AD, MCI, and NC)
were chosen from among all subjects in the ADNI-1
database as of September 2010. To manage the raw and
derived data, processing protocols and provenance, we
employed the LONI Pipeline [28, 38]. The Pipeline is
a graphical workflow environment facilitating the col-
laborative design, execution, validation, visualization,
modification, and sharing of complex heterogeneous
computational protocols.

To promote “open-science” development and
validation, we designed a global shape analysis
(http://bit.ly/15tK0Hd) Pipeline workflow (Supple-
mentary Figure 1, Supplementary File) [28] that
represents an end-to-end computational protocol for
high-throughput data preprocessing. The pipeline
workflow includes skull-stripping [39], volumetric
registration [40], brain anatomical parcellation into 56
ROIs [25, 26], extraction of volume and shape mea-
sures (average mean curvature, surface area, volume,
shape index, and curvedness), and between group sta-
tistical analyses of shape regional differences. The
output of the pipeline workflow is a collection of 3D
scenes illustrating the statistically significant regional
anatomical differences between the study cohorts.

Using the complete collection of 280 imaging mark-
ers (56 ROIs × 5 shape measures), we chose the 80
most significant neuroimaging biomarkers which pro-
vided the highest discrimination between the AD and
NC groups. The 80 neuroimaging biomarkers were
derived from the structural imaging data using the
global shape analysis workflow and are based on
the automated ROI extractions generated by Brain-
Parser [25, 26]. Figure 2 illustrates the LPBA40 atlas,

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/data-samples/
http://adni.loni.usc.edu/about/centers-cores/
http://bit.ly/15tK0Hd
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Fig. 1. The global shape analysis Pipeline workflow and a 3D scene output. The global shape analysis Pipeline workflow and one example of a
3D scene output file indicating statistically significant (p < 0.05) volumetric differences between the AD, MCI, and NC cohorts. These scene files
are generated for each group comparison and each shape or volume metric. Nine ROIs in this 3D scene (the volume and shape measures) for the
associations of the top 20 most significant biomarkers among 80*80 measures : R hippocampus, L hippocampus, R inferior temporal gyrus,
L inferior temporal gyrus, R parahippocampal gyrus, L parahippocampal gyrus, R caudate, L caudate, L superior temporal gyrus

Table 1
Demographic information

Category NC MCI AD p

Number of Subjects 225 382 200
Gender (M/F) 116/109 246/137 108/92 0.004
Age 75.99 ± 4.93 74.77 ± 7.45 75.32 ± 7.39 0.102
Mini-Mental State Examination 29.11 ± 1.00 27.05 ± 1.79 23.48 ± 2.15 <0.0001
ADAS-cog 6.15 ± 2.86 11.43 ± 4.40 18.46 ± 6.28 <0.0001
Education (y, mean ± SD) 16.01 ± 2.90 15.63 ± 3.03 14.81 ± 3.17 <0.0001
Handedness (R/L) 207/18 348/35 188/12 0.418
APOE (�2/�3/�4) 37/349/64 26/491/249 10/221/169 <0.0001

ADAS-cog, Alzheimer’s Disease Assessment Scale-cognitive subscale.

an example of the 3D reconstruction of the Brain-
Parser output for one subject, and the names of the 56
ROIs. Finally, the pipeline workflow (Supplementary
Figure 1) computed the most significant genotypic dis-
criminants among AD, MCI, and NC subjects. The 80
neuroimaging biomarkers were then associated with
the top 80 SNPs, which were chosen by the PLINK
[34].

Alzheimer’s disease gene networks

To measure how relevant our target genes are to
known AD gene networks, we chose 416 SNPs based
on an uncorrected p-value threshold of 0.00005. We
took 140 of these genes (Supplementary Table 2)
that commonly appeared in the RefSeq, UCSC, and
Ensembl gene annotations. These three resources were
used as they are commonly referred to in the SNPnexus
Database (http://www.snp-nexus.org/). Then, we
searched for known pathways/networks associated
with LOAD (Supplementary Table 3): 1) The AD
associated pathway (168 genes) from KEGG pathway

Table 2
Intrinsic geometric cortical features and their definitions

Geometric Measure Mathematical formulas

Volume
∫
R

∫
B

∫
ID(x, y, z) dxdydz

Surface Area
∫ ∫

�

∣∣∣⇀
r u × ⇀

r v

∣∣∣ dudv

Mean Curvature 1
2 (κ1 + κ2)

Shape Index 2
π

arctan
(

κ2+κ1
κ2−κ1

)

Curvedness

√
κ2

1+κ2
2

2

(http://www.genome.jp/dbget-bin/www bget?pathw-
ay:map05010); 2) AlzGene (47 genes) (http://www.
alzgene.org/); and 3) The 20 gene modules in a recent
study [41].

We next ran gene enrichment analysis using the
hypergeometric test [42] between the 140 genes from
the current study and the 22 gene sets, which were
obtained from these three resources (Supplementary
Table 3).

http://www.snp-nexus.org/
http://www.genome.jp/dbget-bin/www_bget?pathway:map05010
http://www.genome.jp/dbget-bin/www_bget?pathway:map05010
http://www.alzgene.org/
http://www.alzgene.org/
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Fig. 2. Summary of the 56 regions of interest (ROIs). Summary of the 56 ROIs (A, C) extracted by the BrainParser software using the LPBA40
atlas (B).

Imaging-genetic associations

We used standard GWAS techniques [43–45] to
extract 80 SNPs according to their p-values indi-
cating significant differences among MCI, AD, and
NC subjects. The results of the association between
the 80 SNPs phenotypes and the 80 neuroimaging
biomarkers are depicted using connectograms [46] and
heatmaps [47].

RESULTS

Demographic characteristics

The demographics and clinical data of the subjects
at the baseline are summarized in Table 1 (using Chi-
square and ANOVA). The 808 subjects (aged 65–85
years) were chosen from the ADNI datasets. The AD,
MCI, and NC subjects had no statistically significant
differences in age.
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Fig. 3. QC process.

Fig. 4. QQ normal probability plot.

Neuroimaging biomarker and SNP phenotypes
selection

The most significant 80 neuroimaging biomarkers
were selected from among the 56 ROIs and five dif-
ferent volume- and shape-based metrics, based on
how well they discriminated between the AD and NC
cohorts (the significance threshold of p < 0.05). The
quality control (QC) result is shown in Fig. 3 and the
QQ normal probability plot is shown in Fig. 4. The 80
SNPs that were chosen according to their p-values
(the significance threshold of p < 0.0002) are shown
in Fig. 5 and Supplementary Table 4. The choice of 80
neuroimaging and 80 SNP biomarkers were driven by
balancing the need to expand the number of possible
biomarkers with the need of minimizing the number of
elements in the heatmap matrices used to generate the
connectogram in the results section.

Nine ROIs for the 20 nueuroimaging biomarkers
were included for the volume and shape measures

(Fig. 1 and Supplementary Table 4). The 80 most sig-
nificant SNPs are shown in Supplementary Table 4.

Alzheimer’s disease gene networks

The hypergeometric test for enrichment was
employed, as the hypergeometric distribution mod-
els the situation where random samples are selected
from a finite population containing a labeled subset.
In functional enrichment studies, the hypergeometric
test yields the probability of targeting a specific gene
(k = 1) from labeled categories (22 gene sets from the
3 archives) when targeting a total of n = 140 genes
from the genome. The null hypothesis is that genes
were targeted randomly versus an alternative research
hypothesis that genes belong to a given annotation
(label) were preferentially targeted. All p-values were
significant as shown in Supplementary Table 3.

Genetic association study

The results of the genetic association study between
the 80 SNPs and the 80 neuroimaging phenotypes are
shown in Supplementary Figure 2A–C. The Pipeline
workflow that was used to compute these SNP-imaging
biomarker associations is shown in Supplementary
Figure 3.

Among the results of the association among the
200 AD subjects (Supplementary Figure 2A), there
were several significant results (p < 0.01). Among the
results of the association among the 383 MCI sub-
jects (Supplementary Figure 2B), there were several
significant results (p < 0.01). Among the results of the
association among the 225 NC subjects (Supplemen-
tary Figure 2C), there were several significant results
(p < 0.05). In the heatmaps, if the density curve moves
to the left (i.e., the teal color) or right (i.e., the pink
color) extremes, then association between the corre-
sponding SNPs (rows) and imaging markers (columns)
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Fig. 5. Manhattan plot (80 SNPs).

is significant. The vertical curves in each column illus-
trate the location where the current cell value (i.e.,
the color) is relative to the distribution [in the range
(−3:+3)] of the ordered and standardized p-values. The
association results ranked in terms of their p values are
shown in Supplementary Table 5A–C.

In addition, we used dynamic circular connectogram
graphs shown in Supplementary Figure 4A–C to illus-
trate the relations between the significant SNPs and
the neuroimaging biomarkers in the AD, MCI, and
NC groups. Each of the SNPs (represented by unique
RS sequence ID) and each shape morphometry mea-
sure, corresponding to the most important ROIs, are
represented in the connectogram graph by circularly
arranged ideograms. Appearance models (style and
color) indicate the relative impact of the corresponding
SNP (right) and ROI measure (left semicircle). Data
tracks comprise the two concentric rings in the outer
shell of the graph. Translocations between circular seg-
ments are shown as chordal curves that connect regions
brought into adjacency by magnitude of the p-value
representing the strength of the SNP-ROI association
according to the results of the statistical tests.

DISCUSSION

Shape measures

Table 2 shows the definitions of the five intrinsic
geometric cortical measures used in this study, as well
as the formulas used to compute them. The principal
curvatures (κ1, κ2) were computed using triangulated
surface models that represented the boundaries of dif-
ferent brain areas [48]. ID (x, y, z) represents the
indicator function of the region of interest (D) [49];
S� : r = r(u, v), (u, v) ∈ �, is the parametric sur-
face representation of the region boundary [50].

Global shape analysis

All the p-values of the 80 neuroimaging biomarkers
are shown in Supplementary Table 4. The left and right
hippocampal volumes were the most significant neu-
roimaging biomarkers, as we expected. It was followed
by the L inferior temporal gyrus (Volume and Sur-
faceArea). There are several prior brain-morphometry
studies [45, 51–53] that indicate that localized brain
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change may have subtle signature, preserve regional
volumes, and require more sensitive surface or tensor-
based analytics to detect. We chose to use shape-based
morphometry to avoid some of the potential problems
with pure volume-based analytics. For example, Shen
et al. used voxel-based morphometry for gray matter
density estimation and FreeSurfer V4 for measuring
volume and cortical thickness in terms of neuroimag-
ing genetics, but did not get shape-based morphometry
[29]. Stein et al. used tensor-based morphometry to
measure individual differences in brain structure at the
voxel level in terms of neuroimaging genetics, but did
not get shape-based morphometry [44]. Additionally,
Biffi et al. used FreeSurfer V4 for measuring volume
and cortical thickness in terms of neuroimaging genet-
ics, but did not get shape-based morphometry [30]. In
this study, we found significant differences not only
for regional brain volumes but also for their bound-
ary shapes, such as surface area and shape index, in
nine specific ROIs (Fig. 1) including both hippocampi
between AD and NC.

SNP selection

The rs2075650 and rs11072463 SNPs survived the
False Discovery Rate (FDR) correction for the multiple
testing (p = 1.719e-04 and p = 0.03321, respectively),
although the significance of the other SNPs was
reduced via the FDR correction. Located on the
TOMM40 gene, rs2075650 has been previously
researched and identified [8, 54–56]. Our association
analysis identified the rs2075650 as a most significant
marker, but the finding replicates a previous GWAS
wherein the location of the SNP (the TOMM40 gene)
was asserted as having played a role in the cause of the
AD. The TOMM40 gene influences the mitochondrial
function and was recently linked to an earlier onset of
AD [54]. Interestingly, the rs2075650 (TOMM40) and
rs429358 (APOE) haplotype showed greater genome
wide association with AD than rs2075650 alone [8].
Previously only considered in union with APOE, due
to linkage disequilibrium between the two genes,
TOMM40 has been found to independently influence
age of onset of AD. The mitochondrial import chan-
nel (TOM) has been implicated in AD as an important
site of amyloid-� protein precursor (A�PP) accumu-
lation, which can make increase in reactive oxygen
species (H2O2) and mitochondrial dysfunction. A�PP
accumulation within the mitochondrial import chan-
nel was more abundant in frontal cortex and the
hippocampus [57].

rs11072463, located in the PML (promyelocytic
leukemia) gene which codes for PML protein was
identified as the second most significant SNP. PML
is expressed in the hippocampus, cortex, cerebellum,
and brain stem in adult mice [58]. Recent studies have
provided evidence that PML is associated with neu-
rogenesis [59] in the central nervous system and is
related to the protein that regulate the cytoskeleton
[60], whose expression in the central nervous system
is induced by specific patterns of synaptic activity,
long-term potentiation, and memory formation and
consolidation. Increasing evidence also supports a
role for PML in regulating synaptic plasticity in the
brain [58]. According to previous reports [59], loss
of PML appears to affect neurogenesis; it is possi-
ble to hypothesize that PML might regulate plasticity
and behavior in normal brain function. PML protein
and PML mRNA level are upregulated in human AD
brains [61]. Recent findings suggest that �-secretase
activity might be upregulated in human AD brains
[62]. Presenilin (PS) is part of the �-secretase com-
plex that produces the Aß. Although the function of
PS is well known as a �-secretase component, PS also
regulates various cellular functions including apoptotic
cell death. p53 could be an important mediator of PS
function in apoptotic cell death induced by DNA dam-
age. Increased level of PML protein is also detected in
neurons of the temporal cortex of AD brains, where �-
secretase activity is essential for pathogenesis [61]. It
may be reasonable to hypothesize that PML expression
is elevated in dementia patients.

Twenty-nine genes including the TOMM40 gene
(rs2075650 and rs157580, Chr 19) were related to the
32 SNPs that were chosen based on their p-values (Sup-
plementary Table 4). Considering how varied genetic
datasets can vary, it is very important to replicate the
findings in different datasets with different methods [8,
54, 55, 63]. These SNPs and the genes in which they
are located have a lot of important functions and puta-
tive pathways or networks through which they can be
related with the processes underlying AD. Supplemen-
tary Table 6 represents the summary of the genes.

A large European GWAS study identified variants
at CLU (rs11136000, Chr 8) and CR1 (rs6656401,
Chr 1) associated with AD, in addition to the pre-
viously known APOE locus [64]. Harold et al.
added PICALM (rs3851179, Chr 11) as associated
with AD and extended the SNPs which are associ-
ated with AD, such as SSB (rs11894266, Chr 2),
MS4A6A (rs610932, rs662196 and rs583791, Chr 11),
CNTN5 (rs10501927, Chr 11), B1N1 (rs7561528 and
rs744373, Chr 2), MS4A4E (rs676309, Chr 11), DAB1
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(rs1539053 Chr 1), C11orf30 (rs11827375, Chr 11),
CR1 (rs1408077, rs6701713 and rs3818361, Chr 1).
rs9446432 (Chr 6), rs1157242 (Chr 8), and rs9384428
(Chr 6) [65]. In terms of GWAS, the results in these
reports are somewhat different from our findings. We
did not detect an association with CLU, CR1, and
PICALM genes in the current study. CD2AP, CD33,
EPHA1, and ABCA7 genes have also been previously
studied [66], but we could not find associations of these
genes. Among the significantly associated 80 SNPs,
we also found various chromosome locations that vary
with diagnosis.

Alzheimer’s disease gene network analysis

Our findings indicate that the set of 140 genes that
we chose (from 416 SNPs with p < 0.00005) repre-
sents commonly appearing genes in known AD gene
networks.

Neuroimaging-genetics association

For the AD cohort, SNP rs2137962, Chromosome
8, and SNPs in chromosome 3 (rs1498853, rs288503,
rs288496) were significantly related with many neu-
roimaging biomarkers in temporal lobe. This suggests
that compared to other brain regions the tempo-
ral area may be more influenced by these SNPs
(Supplementary Table 5A). Previously, these SNPs
(rs2137962, rs1498853, rs288503, rs288496) have not
been reported to be associated with specific brain
areas in dementia. Potkin et al. reported that APOE
(rs429358, rs7412, Chr 19) and TOMM40 (rs2075650,
rs11556505, Chr 19) were associated with hippocam-
pal volume reductions in AD subjects [8]. EFNA5,
ARSB, MAGI2, PRUNE2, and CAND1 genes were
considered as associated with hippocampal reductions
for AD patients [8]. Biffi et al. reported that the APOE
� allele was strongly associated with all measures
except white matter lesion volume, rs1408077 (CR1),
rs3851179 (PICALM), and rs10501927 (CNTN5)
were associated with entorhinal cortical thickness, hip-
pocampal volume with entorhinal cortical thickness,
and white matter lesion volume with parahippocampal
gyrus thickness [30].

In MCI cohort, the SNPs (rs1702797, rs17028008,
rs1251262), chromosome 4, were significantly associ-
ated with R caudate and R fugiform gyrus. Further,
rs2075650 (TOMM40), chromosome 19, was sig-
nificantly associated with R caudate (Supplementary
Table 5B). Shen et al. reported that rs2075650
(TOMM40) was significantly associated with bilateral

hippocampal volume and left amygdala volume in
terms of neuroimaging genetics in a mixed population
of NC, MCI, and AD [29]. However, in the current
study, TOMM40 was most significantly associated
with R caudate mostly in the MCI group.

It is interesting to note that in the NC cohort,
the SNPs [rs734854 (STOML1), rs11072463 (PML),
rs4886844 (PML), rs1052242 (PML)] included
in chromosome 15 were significantly associated
with the neuroimaging biomarkers associated with
R hippocampus, L hippocampus, R insular cortex,
and L insular cortex (Supplementary Table 5C). Thus,
we may conclude that the chromosome 15 is
closely associated with hippocampal and insular cor-
tical shape. The STOML1 gene codes for stomatin
(EPB72)-like 1. Diseases associated with this gene
include tuberculosis and neuronitis. The PML gene
was most significantly associated with the neuroimag-
ing phenotypes mentioned above especially in the
NC group. Additional neuroimaging genetics on both
STOML1 and PML genes appear warranted for future
studies. rs4899412 (RGS6) located in chromosome
14 was significantly associated with caudate related
biomarkers. The RGS6 gene encodes a member of the
RGS (regulator of G protein signaling) family of pro-
teins. The RGS proteins negatively regulate G protein
signaling, and may modulate neuronal, cardiovascular,
lymphocytic activities, and cancer risk. RGS6 exhibits
a uniquely robust expression in heart, especially in
sinoatrial and atrioventricular nodal regions [67]. The
function is known as doing role in heart related patho-
logical situations, but not well known as a factor that
can influence on cognitive function. The RGS6 gene
can influence the pathophysiological processes under-
lying AD similarly to APOE �4 which plays roles in
the pathophysiological AD process and as the factors
underlying coronary heart disease or cerebrovascular
disease as well [68, 69]. In the MCI group, rs2075650
(TOMM40) was most significantly associated with the
R caudate, it was not significantly associated with any
of the neuroimaging biomarkers in the NC group. As
Hua et al. reported, for healthy elderly subjects, APOE
�2 (but no �4) carriers had a smaller ventricular volume
than homozygous APOE �3 carriers, which is the com-
monest genotype [53]. This may support the hypothesis
that this APOE �2 genotype has a protective effect and
genetic influence of the APOE on brain structure can
happen even in healthy subjects.

We have generated much information from this
study, but further studies are required to replicate and
expand the study findings using a larger population
in terms of neuroimaging genetics. As the currently
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available data does not provide sufficient information
for a detailed study of SNP-brain structure corre-
lations, we do plan to continue pursuing pathways
analytic methods for supporting and further validat-
ing these findings in terms of neuroimaging genetics
of AD. Future functional studies using information
in comprehensive pathway databases, including Bio-
carta, and gene expression/RNAseq data are likely to
provide additional insights for the complex interac-
tions between neuroimaging, genetic, epigenetic, and
phenotypic covariates.

Limitations and future directions

The crucial limitations of this study arose from its
small sample size. Because of our restricted power,
we were forced to constrain our analysis to SNPs and
loci with high prior probabilities of association with
AD and imaging phenotypes. Our restricted power
also limited the conclusions we drew on our observed
differential genetic effects on neuroimaging traits.
The possibility of false positive remains for multiple
testing. ADNI has developed and validated an auto-
mated white matter hyperintensities (WMH) detection
method that aligns the imaging data to an elderly
template and identifies WMHs on a per-voxel basis
based on image intensities and prior knowledge of
the probability of WMH occurrence at each location
in the brain [70]. We did not manually double-check
the entire brain scans of all participants, to avoid
potential subjective bias due to rater introduced loca-
tions, sizes, or etiology of MRI-evident infarcts in
the quality control protocol. So, there is a potential
that minor WMH effects may play role in our anal-
yses. The sample only contained mild AD patients
(CDR = 1), a relatively narrow range of illness, and
is thus not fully representative of the disease. Also,
the ADNI sample was not collected under an epi-
demiological ascertainment strategy and the sample
size was relatively small for a GWAS study, which
may affect the generalizability of the findings. Cur-
rently, ADNI does not collect gene expression/RNAseq
data and we could not complete a network analysis
in terms of neuroimaging genetics at this point in
time due to lack of resources and data. Despite the
limitations and challenges of this paper, its encour-
aging results obtained using the proposed analytic
framework appear to have potential for enabling
the discovery of imaging genetics and for localiz-
ing candidate imaging and genomic regions. It is
concluded that imaging genetics holds the possibil-
ity of yielding important clues for the formulation

of an advanced method of early detection and
treatment of AD.
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Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO,
Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford
NR, Petersen RC, Alzheimer’s Disease Neuroimaging Initia-
tive, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL,
Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, CHARGE;
consortium, Berr C, Campion D, Epelbaum J, Dartigues JF,
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